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With its extensive use in industry, assessing the reliability of the micro inertial measurment 
unit (MIMU) has become a pressing need. Unfortunately, the MIMU is made up of several 
components, and the degradation processes of each are intertwined, making it difficult to 
assess the MIMU’s reliability and remaining useful life. In this research, we offer a reli-
ability assessment approach for the MIMU, which has long-lifetime and multiple perform-
ance characteristics (PCs), based on accelerated degradation data and copula theory.Each PC 
model of MIMU is constructed utilizing drift Brownian motion to depict accelerated degra-
dation process. The copula function is used to model the multivariate dependent accelerated 
degradation test data and to describe the dependency between multiple MIMU performance 
parameters. The particle swarm optimization algorithm is used to estimate the unknown 
parameters in the multi-dependent ADT model. Finally, the storage test and simulation ex-
ample on MIMU’s accelerated degradation data verify the feasibility and effectiveness of 
the proposed method.
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The reliability evaluation of MIMU is carried out • 
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The MIMU’s marginal ADT model is obtained by • 
the general Wiener process.

A multivariate-dependent ADT model of MIMU • 
is established based on copula theory.

Sufficient experiments and result analysis verify • 
the effectiveness of proposed methods.
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1. Introduction
MIMU is a new inertial measurement micro-system based on 

micro-electro-mechanical system (MEMS) technology. It combines 
micro-gyroscope, micro-accelerometer, micro-signal conversion pro-
cessing circuit and signal correction circuit to collect object motion 
information, with benefits such as small size, light weight, low power 
consumption, and long life. MIMU has been widely used in industry 
in a variety of scenarios, including aerospace, autonomous driving, 
and so on [8]. MIMU’s reliability and safety have a direct impact on 
the equipment's performance and lifespan. To ensure the safe and de-
pendable operation of MIMU as the core of MEMS inertial navigation 
system during its service life, it is required to investigate the reliabil-
ity evaluation technique of MIMU. However, due to rapid techno-
logical advancements and rising demand, MIMU now has excellent 
reliability and long-life properties, posing new challenges in terms of 
life and reliability evaluation.

Simulation tests make it difficult to observe MIMU failure data in 
a short period of time, and long-term tests will increase the budgetary 

cost. Accelerated testing (AT) extrapolates the life and performance 
information obtained under high stress level tests through reasonable 
statistical methods to obtain reliability or life estimates under conven-
tional stress conditions, under the premise of ensuring that the failure 
mechanism of the product is not changed [12, 32]. The failure process 
of the product is significantly accelerated and the test time is greatly 
shortened due to the application of accelerated stress [18]. Therefore, 
accelerated testing provides a feasible way for efficient reliability as-
sessment of MIMU. Accelerated testing is classified into two types 
based on the different failure modes of the tested products: accelerat-
ed life testing (ALT) and accelerated degradation testing (ADT) [31]. 
For MIMU, only a small amount of failure may occur or no failure 
may occur at all when ALT is performed. In this case, if ALT is still 
used to evaluate the reliability and lifetime of MIMU, more samples 
and time are needed to conduct the test. On the one hand, there is a 
lack of sufficient failure data, and on the other hand, the reliability and 
life estimates derived from this will be lose authenticity. As a result, 
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using an accelerated degradation test to assess MIMU reliability is an 
unavoidable option.

The ability to appropriately depict the performance degradation 
trajectory of a MIMU accelerated degradation model is crucial. The 
performance degradation of MIMU is mainly affected by external en-
vironmental stress and its own material properties, and its degradation 
process is a typical random process. The real performance degrada-
tion data of the MEMS gyroscope as a component of the MIMU also 
demonstrates that the main performance degradation process tends to 
rise or decrease in a relatively brief length of time [15]. As a result, the 
Wiener process with random, non-monotonic independent increments 
can be utilized to describe the degradation path of MIMU performance. 
The Wiener process is widely utilized for degradation path modeling 
and analysis because there is no constraint of monotonic degradation 
path [35]. Lin et al. [13] used the Wiener process model to conduct a 
comprehensive investigation on the degradation of composite mate-
rials under high-cycle bending fatigue (HCBF) pressures. Pan et al. 
[24] introduced an expectation maximization algorithm-based Wiener 
process reliability estimation technique that takes measurement error 
into account. Wang et al. [30] developed a generalized Wiener process 
model that incorporates nonlinearity, time uncertainty, and the unit-to-
unit variation.

At the moment, research on MIMU reliability and life prediction is 
primarily focused on its sub-components, such as the MEMS compo-
nent. A lifetime prediction approach for MEMS gyroscopes is offered 
out by Liu et al. [15] ,which is based on accelerated degradation test-
ing and an acceleration factor model. A method combining wavelet 
analysis and support vector machine (SVM) for MEMS gyroscope 
was proposed by Miao et al. [21]. Wavelet analysis is used to preproc-
ess the performance data of gyroscope, and SVM is used to model the 
processed data, so as to realize the prediction of residual life of gyro-
scope. MEMS accelerometers for space applications were subjected 
to a reliability study by I. Marozau et al. [28]. More relevant literature 
can be referred to [19, 20, 22, 23]. 

As a complex electronic product, the failure of MIMU is often 
caused by multiple performance degradation, any of which can cause 
MIMU failure if it reaches the failure threshold. There is frequently a 
link between the multiple MIMU performance degradation processes 
because of the similar operating environment, stress, structural de-
sign, and other aspects. If the correlation between different perform-
ance degradation processes is ignored, it will definitely cause the loss 
of reliability information, which makes the results of system reliabil-
ity analysis deviate from the actual application. Therefore, one of the 
challenging issues in developing the MIMU multivariate ADT model 
is how to characterize the association between performance degrada-
tion. The joint distribution method and copula method are common 
methods for describing the relationship between multivariate per-
formance parameters. [2, 6, 17, 26]. In practice, the joint distribution 
method assumes that the edge distributions all conform to a certain 
distribution, which has great limitations and is prone to discrepancies 
with the actual situation. While the Copula function acts as a bridge 
between marginal distribution and the joint distribution, and there is 
no restriction on the form of the marginal distribution function, it has 
become an important and convenient tool for solving the correlation 
problem. Hao et al. [7] employed the binary nonlinear diffusion proc-
ess to simulate the degradation of the binary performance parameters 
of LED lamps, defined the dependence of the binary performance 
parameters using the Frank Copula function, and used the Monte 
Carlo (MCMC) algorithm to optimize the parameters, providing for 
the evaluation of degraded equipment’s reliability. Peng et al. [25] 
developed a binary degradation model based on an inverse gaussian 
process, a joint distribution established with the copula function, and 
a two-stage Bayesian method for the degradation process and copula 
function parameter estimation.

Regarding the issue above, this paper proposes a reliability assess-
ment method of MIMU based on accelerated degradation data and 
copula theory. First, the functional principle and performance deg-

radation characteristics of MIMU are analyzed, and the degradation 
model of MIMU is established by using Wiener process. Meanwhile, 
the copula function is introduced to obtain the MIMU reliability as-
sessment model under multiple performance degradation, and then the 
MIMU reliability assessment and life prediction under normal stress 
were realized, in order to make full use of the reliability information 
in accelerated degradation data and accurately describe the correlation 
between performance degradation processes. The following are the 
major contributions of our work: 1) The accelerated degradation test 
is used to evaluate the reliability of MIMU, with high reliability and 
high reliability, which improves the reliability and remaining useful 
life evaluation efficiency of MIMU; 2) The Copula joint probability 
model is used to solve the reliability evaluation problem in the case 
of MIMU with multi-component interdependent competition failure, 
which improves the accuracy of the results; 3) Sufficient experiments 
and result analysis are carried out, which can provide reference for the 
reliability evaluation of similar products.

The rest of the paper is carried out as follows. The functional prin-
ciple and degradation mechanism of MIMU are examined in Section 
2, and the MIMU degradation model and reliability evaluation model 
are established based on Wiener process and Copula theory. Section 
3 includes a storage test and a simulation example based on MIMU’s 
accelerated degradation data. Finally, the conclusions are drawn in 
section 4.

2. Reliability evaluation model of MIMU

2.1. MIMU structure and performance degradation charac-
teristic

MIMU is composed of power module, micro-inertial device mod-
ule, main control module, communication module, shell module, etc. 
It’s a typical example of a multi-component system. Fig. 1 depicts the 
MIMU function structure chart.

The power module is mainly composed of a voltage conversion 
chip and related circuits. It is responsible for converting the externally 
provided power supply into a stable, low-noise multi-channel power 
supply required by the components in the system. 

The micro-inertial device module is mainly composed of the three-
axis MEMS gyroscope, three-axis MEMS accelerometer, temperature 
sensor, mechanical mount and peripheral circuits. It is the core part 
of the MIMU and the basis for the system’s sensitive functions and 
performance. The three-axis gyroscope measures the angular velocity 
signals along the three axes of the carrier coordinate system, and the 
three-axis accelerometer measures the acceleration signals along the 
three axes of the carrier coordinate system. The temperature sensor is 
responsible for monitoring the internal temperature of the sensor and 
compensating the error of the inertial sensor through the temperature 
compensation circuit and the corresponding algorithm to ensure the 
output accuracy of MIMU. If combined with the three-axis geomag-
netic sensor, barometer, etc., the MEMS sensor can be dynamically 
corrected in real time to compensate for the accumulated error and 
further improve the detection accuracy.

The main control module is composed of the micro-processing unit 
chip and corresponding auxiliary circuit. It samples the sensor signal 
in real time through the communication interface, and then completes 
the calculation of the carrier attitude and position information.

The communication module is responsible for the communication 
between MIMU and external devices. The housing module provides 
the sensor installation reference, and protects and seals the internal 
sensors and circuits of the MIMU.

The MEMS inertial devices (the gyroscopes and accelerometers) 
and electronic devices inside MIMU will suffer cumulative damage 
under long-term environmental stress, which will lead to the decline 
or even failure of MIMU-related performance indicators. The per-
formance degradation of MIMU is mainly reflected in the perform-
ance degradation of the internal gyroscope and accelerometer. Most of 
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the existing studies only use the performance state of one MEMS in-
ertial device to characterize the performance state of the entire MIMU 
micro-inertial system, but for the MIMU, which consists of multiple 
inertial devices, it is very unreliable to judge the performance state of 
the whole device by only relying on the performance index of a sin-
gle device. Therefore, this study proposes to characterize the MIMU 
micro-inertial system’s performance state by taking into account both 
the gyroscope and accelerometer’s performance states.

2.2. Model assumptions
We suppose there are L accelerated stress levels in the MIMU con-

stant stress accelerated degradation test (CSADT), with Sl being the l 
stress level. At each accelerated stress level Sl, N samples are tested. 
For all samples, M measurements are taken, with K PCs observed at 
the sequencing t1<t2<…tj…<tM, and degradation measurements ylik(tj) 
taken until the ending time tM, l = 1, 2, ..., L, i = 1, 2, ..., N, k = 1, 2, ..., 
K, j = 1, 2, ..., M, where K is the total number of MIMU PCs, N is the 
number of samples in the experiment and M is the number of inspec-
tion times for each accelerated stress level Sl. In general, the MIMU 
accelerated degradation data at the l stress level can be stated in the 
following way in general:
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The following assumptions are made to fit MIMU degradation data 
at accelerated stress levels.

Assumption 1: Wiener process assumption
Assume MIMU has K degradation PCs, each of which is driven by 

a Brownian motion mechanism. To build the degradation model of 
each PC, we use a linear stochastic model based on Brownian motion. 
The model is written as follows:

 ( ) ( )0 ( )lik j lik lk lj lk ljy t y t B tµ σ= + +  (2)

where ylik(tj) is the kth degradation parameter of the ith sample at the 
lth stress level at the inspection time tj, ylik(0) is the initial value of kth 
degradation parameter of the ith sample at the lth stress level, and μlk 
is the drift parameter of the kth degradation parameter at the lth stress 
level, reflecting the rate of degradation. σlk is the diffusion parameter 
of the kth degradation parameter at the lth accelerated stress, reflect-

ing the effect of random factors on MIMU performance during 
the test, and B(•) is the standard Brownian motion, B(t)~N(0,t).

The difference is derived by Eq. (3) as:

 ( ) ( )lik j lk lj lk ljy t t B tµ σ∆ = +  (3)

Assumption 2: acceleration equation assumption
To assess the MIMU’s reliability under normal operating 

conditions, an acceleration model should be built initially. We 
suppose that P accelerated stress exists (e.g., vibration, tempera-
ture, and voltage), and sets S = (s1, s2, …, sp), ƞ = (ƞ1, ƞ2, …, 
ƞp), where sp is the pth accelerated stress type and ƞp is the pth 
constant coefficient, p = 1, 2, …, P.

MIMU’s stress-acceleration model is represented as follows 
for single and multiple acceleration variables:

 0
1
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p
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where μ(S;ƞ) is the drift parameter, Փ(•) is the function of the accel-
erating stress sp. Meanwhile, we assume that σlk is not affected by the 
accelerated stress.

2.3. Failure time distribution
The kth PC ∆ylk(tj) follows a normal distribution at the lth stress 

level, as can be obtained [10], and ∆ylk(tj) ~ N(μlktlj, σtlj).
The pdf. of ∆ylk(tj) is:
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and the corresponding cdf. of ∆ylk(tj) is:
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We define Dk as the kth PC of MIMU’s failure threshold. The time 
when yk first crosses the associated failure threshold Dk (i.e., the first 
passage time (FPT)) is known as the failure time Tk:

 { }inf : (t)k k kT t y D= ≥  (7)

The life distribution of MIMU degradation failure is depicted by 
the distribution of the first passage time, lifetime information about 
MIMU degradation failure can be acquired from this. At the lth ac-
celerated stress, the life distribution function of the first passage time 
can be derived from the relation [27]:

 ( ) 2
2explk k lk k k lk

lk
k kk

t D D D tF t
t t

µ µ µ
σ σσ

    − − −
= φ + φ            

       (8)

As a conclusion, the product reliability function can be written as:

 ( ) 2
2expk lk lk k k lk

lk
k kk

D t D D tR t
t t

µ µ µ
σ σσ

    − +
= φ − φ −            

      (9)

where Rlk(t) is the kth degradation parameter’s reliability at the lth 
stress level, and Dk is the kth degradation parameter’s failure thresh-

Fig. 1. The function structure chart of MIMU
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old. μlk is the drift parameter of the kth degradation parameter at the 
lth stress level, σk is the diffusion parameter, Փ(•) is a normal distribu-
tion cumulative probability function.

The probability density function of FPT is:

 ( ) ( )2
23

( ) exp
22

k lklk k
lk

kk

D tdR t Df t
dt tt

µ

σσ π

 − = − = −
 
 

 (10)

2.4. Multivariate dependent accelerated degradation mod-
eling of MIMU

2.4.1. Model building
A copula is a multivariate probability distribution with uniform 

marginal probability distributions for all variables in probability 
theory and statistics. Copulas are used to depict the dependence re-
lationship between random variables [34]. Assume that the MIMU’s 
performance degradation parameters (Y1, Y2, …, YK) are a random 
vector. Assume that the marginal CDFs Fk(y) = P(Yk≤y) are continu-
ous functions. Sklar’s theorem [2] states that every multivariate cu-
mulative distribution function H(y1, y2, …, yK) = P(Y1≤y1, Y2≤y2, …, 
YK≤yK) of the random vector (Y1, Y2, …, YK) can be expressed in terms 
of its marginals Fk(y) = P(Yk≤y) and a copula C:

 ( ) ( ) ( ) ( )( )1 2 1 1 2 2, ,..., , ,...,K K KH y y y C F y F y F y=  (11)

Set f(y1, y2, …, yK) is the joint distribution probability density func-
tion of the performance degradation of MIMU, it can be derived from 
the Eq. (11), then:
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is the copula probability density function, FK(yK;θK) and fK(yK;θK) are 
the marginal distribution function and marginal probability density 
function of the MIMU performance parameter yk, respectively. δ are 
the parameters of the copula function.

The CDF of the time to failure for the K degradation processes in 
the MIMU micro-system can be expressed as Fk(t) = 1-Rk(t) k = 1, 2, 
…, K. The joint CDF of T1, T2, …, TK is written as:

( ) ( ) ( ) ( )( )1 1 2 2 1 2 1 1 2 2( , , , ) , ,..., , ,...,K K K K KP T t T t T t H t t t C F t F t F t≤ ≤ ≤ = = δ;  
(13)

Correspondingly, the marginal reliability for MIMU is expressed 
as:
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The relationship between C(F1(t1), F2(t2), ..., FK(tK)) and C(R1(t1), 
R2(t2), ..., RK(tK)) is represented as:
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Therefore, the MIMU’s reliability function with K degradation 
processes at time t can be expressed as:
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where RYK(t) denotes MIMU’s marginal reliability function for the 
kth degradation trajectory at time t.

Table 1 shows CDFs and PDFs for common bivariate copulas in 
particular.

2.4.2. Determination of the Copula function
The Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) concepts are utilized in this research to choose the 
copula function model that best fits the original data. The copula type 
with the lowest AIC/BIC is the superior choice. According to AIC/
BIC principles. Eq. (17) and Eq. (18) are the AIC and BIC formulas 
[1, 9]:

 2ln 2AIC MLE u= − +  (17)

 2ln lnBIC MLE u N= − +  (18)

Table 1. The CDFs and PDFs for common bivariate copulas

Copula 
function ( ), ;C u v δ ( ), ;c u v δ Range of parameters

Frank
1 ( 1)( 1)ln(1 )

( 1)

u ve e
e

δ δ

δδ

− −

−
− −

− +
−

( )

2
( 1)

(( 1) ( 1)( 1))

u v

u v
e e

e e e

δ δ

δ δ δ
δ − + −

− − −
− −

− + − −
( ) { }, / 0−∞ +∞

Gumbel 1/exp( (( ln ) ( ln ) ) )u vδ δ δ− − + −
C u v C u v u v

uv u v

, ; ln , ; (ln )(ln )

( ln ) ( ln )

δ δ δ δ

δ δ

( ) − ( ) + −( )[ ]
− + −

−1 1





−2 1/δ ( )1,+∞

Clayton max ( ) ,/u v− − −+ −{ }δ δ δ1 01 1 2 1/(1 )( ) ( 1)uv u vδ δ δ δδ − − − − − −+ + − ( )0,+∞



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 3, 2022558

where MLE is the maximum value of likelihood function, u is the 
number of parameters in the model, and N is sample size. 

2.5. Parameter estimation
The log-likelihood function can be derived as follows using the 

joint probability density Eq. (12):
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where F1(y1;θ1), F2(y2;θ2), …, FK(yK;θK) are the marginal failure 
distribution function for the MIMU performance parameter y, and 
f1(y1;θ1), f2(y2;θ2), …, fK(yK;θK) are the marginal pdf, δ are the param-
eters of the copula function.

Because the log-likelihood function Eq. (19) has so many unknown 
parameters, it is impossible to maximize it directly. The copula func-
tion efficiently distinguishes between the marginal and joint distribu-
tions of random variables. To estimate the parameters of the reliabil-
ity model with multivariate performance degradation, we introduce a 
two-step parameter estimation method based on particle swarm op-
timization (PSO), which substantially minimizes the complexity of 
parameter estimation. The following are the specific implementation 
steps.

A. Parameter estimation of marginal ADT models
Combined with the probability density Eq. (5), the likelihood 

function of marginal ADT models can be derived:
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Furthermore, the log-likelihood function is:
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Therefore, the problem of estimating the parameters of the mar-
ginal distribution function using maximum likelihood can be 
turned into an extreme value problem. PSO is introduced in this 
article to change multi-parameter estimating challenges into 
multi-parameter optimum. The method features a flexible and 
simple structure, as well as a decent global search and a quick 
convergence speed.

The likelihood function is the objective function of the multi-
parameter estimate method, and the goal of optimization is to 
obtain the largest likelihood function. As a particle, the parame-
ters to be estimated (σ, ƞ1, ƞ2, …, ƞP) are defined. In general, the 
higher the number of particles, the greater the objective func-
tion’s convergence. However, too many particles will increase 

the calculation time. The higher the number of iterations, the more 
accurate the convergence to the best value will be, but it will also take 
longer to compute. The literature describes the particle optimization 
procedure [16].

B. Copula parameter estimation of joint distribution function
Based on the estimated value of the marginal distribution function 

parameter θMar = [σ, ƞ0, ƞ1, ƞ2, …, ƞP]K×(2+P), the estimated value of 
the unknown parameter of the copula function is obtained by using the 
maximum likelihood estimation method:
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where F1(ylij1; 1θ ), F2(ylij2; 2θ ), …, FK(ylijK; Kθ ) are the marginal dis-
tribution function for the MIMU performance degradation parameters 
y. δ are the parameters of the copula function.

3. Numerical examples
To illustrate the efficiency of the proposed modeling method, we 

use examples from the MIMU storage degradation test and constant 
stress accelerated degradation simulation in this study.

3.1. MIMU storage degradation test
Related scholars have carried out the sensitive stress analysis of mi-

cro gyroscopes and micro accelerometers and obtained that tempera-
ture stress is an important factor affecting their performance [3–5, 11]. 
Therefore, the temperature stress was selected to carry out a constant 
stress accelerated storage test on MIMU, and the temperature stress 
was controlled to be 60°C during the test. The test sample experimen-
tal procedure is shown in Fig. 2.

The bias, bias stability, and bias instability of the MEMS gyroscope 
and MEMS accelerometer in the MIMU were tested for performance 
every 24 hours during the test, which is one of the primary indica-
tors used to assess the MIMU’s performance. The overall test period 
was 1176 hours, and there were 49 performance degradation data re-
corded.

The effective parameter of MIMU Y-axis bias is selected as the 
performance degradation index of MIMU, and the variation curves 
of bias of gyroscope and bias of accelerometer with time are obtained 
by processing the experimental data, as shown in Fig. 3. The MIMU 
performance degradation curve in Fig. 3 tends to increase or decrease 
in a short period of time, which has the characteristics of a stochastic 
process. It preliminarily verifies the validity of the Wiener process 
modeling assumption.

Fig. 4 depicts a two-dimensional scatter plot of the MIMU’s per-
formance data. It’s clear that the top tails are linked, whereas the bot-
tom tails haven’t changed much. It can be preliminarily judged that 
there is a correlation between the MIMU performance degradation 
amounts. Therefore, issues related to multi-component degradation 
must be taken into account while evaluating MIMU’s reliability.

Fig. 2. MIMU storage degradation test
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Fig. 4. Scatter plot of the MIMU’s original data distribution

3.2. MIMU accelerated degradation simulation test 

3.2.1. Simulation test
The MIMU constant stress accelerated degradation simulation test 

is performed in this part using the performance degradation data from 
the MIMU storage degradation test in Section 3.1. Table 2 shows the 
parameter settings of the marginal ADT model of each MIMU’s PC, 

as well as the test acceleration stress temperature T. The CSADT’s 
temperature stress levels were set at 60°C, 70°C, and 80°C, with 70, 
50, and 30 inspections at each level, respectively. Every 24 hours, 
assess MIMU’s performance. For each accelerating stress, the MIMU 
sample size is 4. The performance degradation is set to 0 at the start. 
The degradation curve of MIMU simulation performance (Bias) is 
shown in Fig. 5.

According to Fig. 5, we can clearly see that the degradation tra-
jectories of the two PCs fluctuate over time, proving that the MIMU 
performance degrades as a typical random process. For each PC, 
the performance degradation trajectory at high stress is more likely 
to reach the failure threshold and the degradation trend is more pro-
nounced than at low stress, which is consistent with the accelerated 
testing assumptions.

Fig. 3. Storage degradation data of MIMU: a) storage degradation data of gyroscope bias, b) storage degradation data of accelerometer bias

Table 2. The parameter setting of marginal ADT models

PCs Parameter set value

Gyroscope bias

ƞ0 5.89

ƞ1 3768.09

σ 5.8966×10-4

Accelerometer 
bias

ƞ0 60.52

ƞ1 3133.3

σ 0.0571

Fig. 5. CSADT data of MIMU’s PCs: a) storage degradation data of gyroscope bias, b) storage degradation data of accelerometer bias

b)

b)

a)

a)
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3.2.2. Degradation model checking
We can conclude that performance degradation increment y follows 

a normal distribution due to the nature of the Wiener process [14, 33], 
∆y = y(t+∆t)~N(μ∆t, σ2∆t). Therefore, the effectiveness of the MIMU 
performance degradation model can be verified by using the normal 

probability distribution diagram. If the incremental performance deg-
radation data obeys a normal distribution, the curve should be ap-
proximated as a straight line. Fig. 6 depicts the normal distribution 
probability curve of the MIMU performance degradation increment 
under each acceleration stress. In the normal probability distribution 

c) d)

e) f)

b)a)

Fig. 6. Goodness-of-fit test of normal distribution of MIMU’s degradation incremental data: a) goodness-of-fit test of normal distribution of 60℃ gyroscope bias 
degradation incremental data, b) goodness-of-fit test of normal distribution of 60℃ accelerometer bias degradation incremental data, c) goodness-of-fit 
test of normal distribution of 70℃ gyroscope bias degradation incremental data, d) goodness-of-fit test of normal distribution of 70℃ accelerometer bias 
degradation incremental data, e) goodness-of-fit test of normal distribution of 80℃ gyroscope bias degradation incremental data, f) goodness-of-fit test of 
normal distribution of 80℃ accelerometer bias degradation incremental data
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diagram, the performance degradation increment under each tempera-
ture stress is almost a straight line, demonstrating the efficiency of the 
Wiener process for modeling MIMU performance degradation.

3.2.3. Parameter estimation based on PSO algorithm
To fit the accelerated degradation data of MIMU’s each PC inde-

pendently, the random-effect general Wiener process model, i.e. Eq. 
(2), is being used. Table 3 shows the estimators of marginal ADT 
model parameters for each PC based on the statistical inference proc-
ess described in section 2.5.

The multivariate parameter estimation method based on PSO is 
used to estimate the parameters of the marginal distribution function. 
Set the simulation to 300 particles and 200 iterations, then choose 6 
different paths at random to construct the objective function. Use the 

average of the estimated values from the 6 separate paths as the esti-
mated parameters. Fig.7 depicts the iterative procedure and estimated 
parameter vectors for six possible pathways. The estimated values 
under different paths are quite close, as can be seen, and the average 
of the parameters obtained by six different paths is used to determine 
the ideal value of each parameter. The relative square error (RSE) 
[29], RSE = (θEstimated − θSetting)2/(θSetting)2, is calculated to compare 
the error between the estimated value and the real value, as shown in 
Table 2. The results show that the PSO estimation method is accurate 
and effective.

3.2.4. Determination of the Copula function
The associated parameters of each Copula function are estimated 

using the maximum likelihood estimation method, and the AIC and 
BIC principles are utilized to identify the best Copula. The results 
of parameter estimates, the Kendall coefficient, AIC values, and BIC 
values are shown in Table 3. Gumbel copula has the minimum AIC 
and BIC values, indicating that it has the best fitting effect on degra-
dation-related data, as shown in Table 4.

3.2.5. Reliability assessment
Combined with the specific application conditions of MIMU in 

practice, the failure thresholds of its performance parameters are de-
termined to be gyroscope bias ≥ 0.15 deg/s and accelerometer bias ≥ 
10 mg. Substituting the estimated value of the model parameters and 
the failure thresholds of the two performance parameters into equa-
tions (8) and (10), the reliability curves of MIMU under normal stress 
25℃ without considering the parameter correlation and considering 
the parameter correlation can be obtained, as shown in Fig. 8. 

Table 3. Parameter estimation

PCs Parameter Estimation value RSE

Gyroscope 
bias

ƞ0 8.7282 23.2%

ƞ1 3899.2 0.12%

σ 5.9501×10-4 0.00%

Accelerom-
eter bias

ƞ0 81.7891 12.35%

ƞ1 3542.9 1.7%

σ 0.0569 0.00%

Fig. 7. Variation curve of objective function with iteration times and estimated parameters under different paths: a) estimation results of gyroscope bias parameters, 
b) estimation results of accelerometer bias parameters

a)

b)
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According to Fig. 8, the reliability assessment results obtained in-
dependently by considering the MIMU performance degradation are 
lower than those obtained based on the proposed method, which indi-
cates that the reliability assessment results related to ignoring the sys-

tem performance degradation are more conservative. According to the 
product life calculation formula ( )0MTBF R t dt∞

= ∫  
，we can obtain 

the MIMU lifetime of 7486.3 hours without considering degradation 
correlation and 8181.2 hours when considering performance degrada-
tion correlation. The result has a 9.3% longer lifespan when independ-
ency is taken into account. Considering the two comprehensively, the 
modeling method that takes into account degradation correlation is 
closer to the actual application in some ways, and can give a more 
solid foundation for the evaluation results.

4 Conclusion
A MIMU reliability assessment approach is proposed in this study, 

which is based on accelerated degradation data and copula theory. To 
describe the MIMU ADT data and build the univariate ADT model 
for each PC, we use the general Wiener process. By using copula 
function, the MIMU reliability assessment model under multiple per-
formance degradation was obtained. The suggested MIMU reliability 
assessment approach is demonstrated by the MIMU storage test and 
accelerated degradation simulation example. The results reveal that 
treating the relationship between various performance factors as in-
dependent of each other for a highly reliable product like MIMU with 
many performance parameters is not in accordance with the actual 
situation and tend to underestimate the product’s reliability.
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